Recent Developments of Stetter Reaction

A Brief Review

Authors

  • Jawad Kadhum Shneine Department of Chemistry, College of Science, Al-Nahrain University, Baghdad - Iraq
  • Shayma Muhsen Ahmad Department of Chemistry, College of Science, Al-Nahrain University, Baghdad - Iraq https://orcid.org/0000-0003-0890-244X
  • Dhea Sh. Zagheer Department of Chemistry, College of Science, Al-Nahrain University, Baghdad - Iraq

DOI:

https://doi.org/10.48112/bcs.v1i4.246

Abstract

Abstract Views: 510

In this short review definition, mechanism, and recent developments of the Stetter reaction, in the period last ten years from 2011 to 2021 are presented. This reaction comprises N-heterocyclic carbene (NHC)-catalyzed umpolung of aldehydes followed by their capturing with activated carbon-carbon double bonds (Michael acceptors). This work includes also progresses in the inter-molecular and intra-molecular versions and enantioselective transformations. Underscoring the recent advances in the applications of Stetter reaction in the synthesis of various heterocyclic systems and total synthesis of natural products have been also introduced.

Keywords:

Stetter reaction, Benzoin reaction, NHC-catalysts, Asymmetric synthesis, Umpolung

Metrics

Metrics Loading ...

References

Barman, D., Ghosh, T., Show, K., Debnath, S., Ghosh, T., & Maiti, D. K. (2021). NHC-Mediated Stetter-Aldol and Imino-Stetter-Aldol Domino Cyclization to Naphthalen-1 (2 H)-ones and Isoquinolines. Organic Letters, 23(6), 2178-2182. https://doi.org/10.1021/acs.orglett.1c00337

Biju, A. T., Kuhl, N., & Glorius, F. (2011). Extending NHC-catalysis: coupling aldehydes with unconventional reaction partners. Accounts of chemical research, 44(11), 1182-1195. https://doi.org/10.1021/ar2000716

Breslow, R. (1958). On the mechanism of thiamine action. IV. 1 Evidence from studies on model systems. Journal of the American Chemical Society, 80(14), 3719-3726. https://doi.org/10.1021/ja01547a064

Bugaut, X., & Glorius, F. (2012). Organocatalytic umpolung: N-heterocyclic carbenes and beyond. Chemical Society Reviews, 41(9), 3511-3522. https://doi.org/10.1039/C2CS15333E

Büttner, H., Steinbauer, J., & Werner, T. (2015). Synthesis of cyclic carbonates from epoxides and carbon dioxide by using bifunctional one‐component phosphorus‐based organocatalysts. ChemSusChem, 8(16), 2655-2669. https://doi.org/10.1002/cssc.201500612

Chen, X. Y., Gao, Z. H., & Ye, S. (2020). Bifunctional N-heterocyclic carbenes derived from L-pyroglutamic acid and their applications in enantioselective organocatalysis. Accounts of chemical research, 53(3), 690-702. https://doi.org/10.1021/acs.accounts.9b00635

DiRocco, D. A., Noey, E. L., Houk, K. N., & Rovis, T. (2012). Catalytic asymmetric intermolecular stetter reactions of enolizable aldehydes with nitrostyrenes: Computational study provides insight into the success of the catalyst. Angewandte Chemie, 124(10), 2441-2444. https://doi.org/10.1002/ange.201107597

Draskovits, M., Kalaus, H., Stanetty, C., & Mihovilovic, M. D. (2019). Intercepted dehomologation of aldoses by N-heterocyclic carbene catalysis–a novel transformation in carbohydrate chemistry. Chemical Communications, 55(81), 12144-12147. https://doi.org/10.1039/C9CC05906G

Draskovits, M., Stanetty, C., Baxendale, I. R., & Mihovilovic, M. D. (2018). Indium-and Zinc-Mediated Acyloxyallylation of Protected and Unprotected Aldotetroses – Revealing a Pronounced Diastereodivergence and a Fundamental Difference in the Performance of the Mediating Metal. The journal of organic chemistry, 83(5), 2647-2659. https://doi.org/10.1021/acs.joc.7b03063

Dvorak, C. A., & Rawal, V. H. (1998). Catalysis of benzoin condensation by conformationally-restricted chiral bicyclic thiazolium salts. Tetrahedron letters, 39(19), 2925-2928. https://doi.org/10.1016/S0040-4039(98)00439-0

Ema, T., Nanjo, Y., Shiratori, S., Terao, Y., & Kimura, R. (2016). Solvent-free benzoin and Stetter reactions with a small amount of NHC catalyst in the liquid or semisolid state. Organic letters, 18(21), 5764-5767. https://doi.org/10.1021/acs.orglett.6b03115

Enders, D., & Balensiefer, T. (2004). Nucleophilic carbenes in asymmetric organocatalysis. Accounts of chemical research, 37(8), 534-541. https://doi.org/10.1021/ar030050j

Enders, D., & Kallfass, U. (2002). An efficient nucleophilic carbene catalyst for the asymmetric benzoin condensation. Angewandte Chemie International Edition, 41(10), 1743-1745. https://doi.org/10.1002/1521-3773(20020517)41:10%3C1743::AID-ANIE1743%3E3.0.CO;2-Q

Enders, D., Breuer, K., Runsink, J., & Teles, J. H. (1996). The first asymmetric intramolecular Stetter reaction. Preliminary communication. Helvetica chimica acta, 79(7), 1899-1902. https://doi.org/10.1002/hlca.19960790712

Enders, D., Han, J., & Henseler, A. (2008). Asymmetric intermolecular Stetter reactions catalyzed by a novel triazolium derived N-heterocyclic carbene. Chemical communications, (34), 3989-3991. https://doi.org/10.1039/B809913H

Fang, X., Chen, X., Lv, H., & Chi, Y. R. (2011). Enantioselective Stetter Reactions of Enals and Modified Chalcones Catalyzed by N‐Heterocyclic Carbenes. Angewandte Chemie, 123(49), 11986-11989. https://doi.org/10.1002/ange.201105812

Fleige, M., & Glorius, F. (2017). α‐Unsubstituted Pyrroles by NHC‐Catalyzed Three‐Component Coupling: Direct Synthesis of a Versatile Atorvastatin Derivative. Chemistry–A European Journal, 23(45), 10773-10776. https://doi.org/10.1002/chem.201703008

Garapati, V. K. R., & Gravel, M. (2018). Oxazolium Salts as Organocatalysts for the Umpolung of Aldehydes. Organic letters, 20(20), 6372-6375. https://doi.org/10.1021/acs.orglett.8b02636

Ghosh, A., Patra, A., Mukherjee, S., & Biju, A. T. (2018). Synthesis of 2-aryl naphthoquinones by the cross-dehydrogenative coupling involving an NHC-catalyzed endo-stetter reaction. The Journal of Organic Chemistry, 84(2), 1103-1110. https://doi.org/10.1021/acs.joc.8b02931

Ghosh, A., Patra, A., Mukherjee, S., & Biju, A. T. (2018). Synthesis of 2-aryl naphthoquinones by the cross-dehydrogenative coupling involving an NHC-catalyzed endo-stetter reaction. The Journal of Organic Chemistry, 84(2), 1103-1110. https://doi.org/10.1021/acs.joc.8b02931

Harnying, W., Sudkaow, P., Biswas, A., & Berkessel, A. (2021). N‐Heterocyclic Carbene/Carboxylic Acid Co‐Catalysis Enables Oxidative Esterification of Demanding Aldehydes/Enals, at Low Catalyst Loading. Angewandte Chemie International Edition, 60(36), 19631-19636. https://doi.org/10.1002/anie.202104712

Hinkamp, L., & Schäfer, H. J. (2015). Allylic oxidation of methyl 10‐undecenoate and nucleophilic additions to methyl 9‐oxo‐10‐undecenoate. European Journal of Lipid Science and Technology, 117(2), 255-265. https://doi.org/10.1002/ejlt.201400238

Jousseaume, T., Wurz, N. E., & Glorius, F. (2011). Highly enantioselective synthesis of α‐amino acid derivatives by an NHC‐catalyzed intermolecular Stetter reaction. Angewandte Chemie International Edition, 50(6), 1410-1414. https://doi.org/10.1002/anie.201006548

Kerr, M. S., & Rovis, T. (2004). Enantioselective synthesis of quaternary stereocenters via a catalytic asymmetric Stetter reaction. Journal of the American Chemical Society, 126(29), 8876-8877. https://doi.org/10.1021/ja047644h

Li, Y., Geng, L., Song, Z., & Zhang, Z. (2022). A DFT study of NHC-catalyzed reactions between 2-bromo-2-enals and acylhydrazones: mechanisms, and chemo-and stereoselectivities. New Journal of Chemistry, 46 (19), 9146-9154. https://doi.org/10.1039/D2NJ01078J

Liu, F., Bugaut, X., Schedler, M., Fröhlich, R., & Glorius, F. (2011). Designing N‐Heterocyclic Carbenes: Simultaneous Enhancement of Reactivity and Enantioselectivity in the Asymmetric Hydroacylation of Cyclopropenes. Angewandte Chemie International Edition, 50(52), 12626-12630. https://doi.org/10.1002/anie.201106155

MináKim, S., YuáJin, M., JináKim, M., SugáKim, Y., EuiáSong, C., HyunáRyu, D., & WoonáYang, J. (2011). N-Heterocyclic carbene-catalysed intermolecular Stetter reactions of acetaldehyde. Organic & Biomolecular Chemistry, 9(7), 2069-2071. https://doi.org/10.1039/C0OB01178A

Mitra, R. N., Show, K., Barman, D., Sarkar, S., & Maiti, D. K. (2018). NHC-catalyzed dual Stetter reaction: a mild cascade annulation for the syntheses of naphthoquinones, isoflavanones, and sugar-based chiral analogues. The Journal of Organic Chemistry, 84(1), 42-52. https://doi.org/10.1021/acs.joc.8b01503

Moore, J. L., Silvestri, A. P., de Alaniz, J. R., DiRocco, D. A., & Rovis, T. (2011). Mechanistic investigation of the enantioselective intramolecular Stetter reaction: Proton transfer is the first irreversible step. Organic letters, 13(7), 1742-1745. https://doi.org/10.1021/ol200256a

Moore, J. L., Silvestri, A. P., de Alaniz, J. R., DiRocco, D. A., & Rovis, T. (2011). Mechanistic investigation of the enantioselective intramolecular Stetter reaction: Proton transfer is the first irreversible step. Organic letters, 13(7), 1742-1745.

Murry, J. A., Frantz, D. E., Soheili, A., Tillyer, R., Grabowski, E. J., & Reider, P. J. (2001). Synthesis of α-amido ketones via organic catalysis: thiazolium-catalyzed cross-coupling of aldehydes with acylimines. Journal of the American Chemical Society, 123(39), 9696-9697. https://doi.org/10.1021/ja0165943

Patra, A., Bhunia, A., & Biju, A. T. (2014). Facile synthesis of γ-ketophosphonates by an intermolecular Stetter reaction onto vinylphosphonates. Organic letters, 16(18), 4798-4801. https://doi.org/10.1021/ol502262d

Qi, J., Xie, X., He, J., Zhang, L., Ma, D., & She, X. (2011). N-Heterocyclic carbene-catalyzed cascade epoxide-opening and lactonization reaction for the synthesis of dihydropyrone derivatives. Organic & Biomolecular Chemistry, 9(17), 5948-5950. https://doi.org/10.1039/C1OB05854A

Ranjbari, M. A., Tavakol, H., & Manoukian, M. (2021). Regioselective and solvent-free arylation of β-nitrostyrenes with mono-and dialkyl anilines. Research on Chemical Intermediates, 47(2), 709-721. https://doi.org/10.1007/s11164-020-04294-6

Rezazadeh Khalkhali, M., Wilde, M. M., & Gravel, M. (2020). Enantioselective Stetter reactions catalyzed by bis (amino) cyclopropenylidenes: Important role for water as an additive. Organic Letters, 23(1), 155-159. https://doi.org/10.1021/acs.orglett.0c03879

Rong, Z. Q., Li, Y., Yang, G. Q., & You, S. L. (2011). D-camphor-derived triazolium salts for enantioselective intramolecular Stetter reactions. Synlett, 2011(07), 1033-1037. https://doi.org/10.1055/s-0030-1259732

Shen, G., Liu, H., Chen, J., He, Z., Zhou, Y., Wang, L., ... & Fan, B. (2021). Zinc salt-catalyzed reduction of α-aryl imino esters, diketones and phenylacetylenes with water as hydrogen source. Organic & Biomolecular Chemistry, 19(16), 3601-3610. https://doi.org/10.1039/D1OB00155H

Stetter, H., & Schreckenberg, M. (1973). A new method for addition of aldehydes to activated double bonds. Angewandte Chemie International Edition in English, 12(1), 81-81. https://doi.org/10.1002/anie.197300811

Steward, K. M., Gentry, E. C., & Johnson, J. S. (2012). Dynamic kinetic resolution of α-keto esters via asymmetric transfer hydrogenation. Journal of the American Chemical Society, 134(17), 7329-7332. https://doi.org/10.1021/ja3027136

Trost, B. M., Shuey, C. D., & DiNinno Jr, F. (1979). A stereocontrolled total synthesis of (.+-.)-hirsutic acid C. Journal of the American Chemical Society, 101(5), 1284-1285. https://doi.org/10.1021/ja00499a043

Um, J. M., DiRocco, D. A., Noey, E. L., Rovis, T., & Houk, K. N. (2011). Quantum mechanical investigation of the effect of catalyst fluorination in the intermolecular asymmetric stetter reaction. Journal of the American Chemical Society, 133(29), 11249-11254. https://doi.org/10.1021/ja202444g

Wang, Y., Liu, Y., Gong, K., Zhang, H., Lan, Y., & Wei, D. (2021). Theoretical study of the NHC-catalyzed C–S bond cleavage and reconstruction reaction: mechanism, stereoselectivity, and role of catalysts. Organic Chemistry Frontiers, 8(19), 5352-5360. https://doi.org/10.1039/D1QO00706H

Zarganes-Tzitzikas, T., Neochoritis, C. G., & Dömling, A. (2019). Atorvastatin (lipitor) by MCR. ACS Medicinal Chemistry Letters, 10(3), 389-392. https://doi.org/10.1021/acsmedchemlett.8b00579

Zhang, J., Xing, C., Tiwari, B., & Chi, Y. R. (2013). Catalytic activation of carbohydrates as formaldehyde equivalents for Stetter reaction with enones. Journal of the American Chemical Society, 135(22), 8113-8116. https://doi.org/10.1021/ja401511r

Zhou, Q., Bao, Y., & Yan, G. (2022). 2‐Bromo‐3, 3, 3‐Trifluoropropene: A Versatile Reagent for the Synthesis of Fluorinated Compounds. Advanced Synthesis and Catalysis, 364(8), 1371-1387. https://doi.org/10.1002/adsc.202200023

Zhu, J., Moreno, I., Quinn, P., Yufit, D. S., Song, L., Young, C. M., ... & O’Donoghue, A. C. (2022). The Role of the Fused Ring in Bicyclic Triazolium Organocatalysts: Kinetic, X-ray, and DFT Insights. The Journal of organic chemistry, 87(6), 4241-4253. https://doi.org/10.1021/acs.joc.1c03073

Zobel, M., & Schäfer, H. J. (2016). Synthesis of fatty acid conjugates with phenols, carbohydrates, amines, and CH‐acidic compounds by Pd (0)‐catalyzed allylic substitution. European Journal of Lipid Science and Technology, 118(1), 80-92. https://doi.org/10.1002/ejlt.201500195

Recent Developments of Stetter Reaction: A Brief Review

Published

2022-10-01

How to Cite

Shneine, J. K., Ahmad, S. M., & Zagheer, D. S. (2022). Recent Developments of Stetter Reaction: A Brief Review. Biomedicine and Chemical Sciences, 1(4), 234–240. https://doi.org/10.48112/bcs.v1i4.246

Issue

Section

Articles