Mechanochemical Synthesis of Host-Guest Inclusion Complexes of Cyclodextrin

A Review

Authors

DOI:

https://doi.org/10.48112/bcs.v2i2.287

Abstract

Abstract Views: 319

Mechanochemical activation by grinding appears to be the preferred method for the solid-state synthesis of the cyclodextrin inclusion complex because it is fast, highly effective, convenient, and versatile. It is also sustainable and eco-friendly since it uses no solvents. As a result of this review, we will highlight both the advantages and shortcomings of such an approach. Furthermore, we will review the current data in this area systematically. Several possible mechanisms have been illustrated to explain complex formation in the solid state as a result of grinding. We examined the process variables associated with each type of milling instrument applied, as well as the features of the resulting products. We also discussed the physio-chemical properties of the drug as well as cyclodextrin. As a result of the critical process parameters, a rational selection of conditions for the efficient preparation of inclusion complexes by grinding has been demonstrated, with the ultimate objective of increasing the use of this solvent-free process for preparing cyclodextrin inclusion complexes in solids.

Keywords:

Mechanochemistry, solvent-free, planetary mill, Multicomponent Solid, Cyclodextrins, Inclusion complexes

Metrics

Metrics Loading ...

References

Adams, H., Miller, B. P., Furlong, O. J., Fantauzzi, M., Navarra, G., Rossi, A., ... & Tysoe, W. T. (2017). Modeling mechanochemical reaction mechanisms. ACS Applied Materials & Interfaces, 9(31), 26531-26538. https://doi.org/10.1021/acsami.7b05440

Ahmadian, K., Jalilian, J., & Pirzad, A. (2021). Nano-fertilizers improved drought tolerance in wheat under deficit irrigation. Agricultural Water Management, 244, 106544. https://doi.org/10.1016/j.agwat.2020.106544

Aleksandrov, A. I., Shevchenko, V. G., Tarasenkov, A. N., Surin, N. M., Cherkaev, G. V., Metlenkova, I. Y., ... & Degtyarev, E. N. (2021). Mechanochemical synthesis and structure of a nanocluster {organosilicon dendrimer-Copper dimer}. Journal of Organometallic Chemistry, 950, 121976. https://doi.org/10.1016/j.jorganchem.2021.121976

Al-Rawajfeh, A. A. E., Alrbaihat, M., & AlShamaileh, E. (2020). Effects of milling time and speed on nutrient availability of KH2PO4 with kaolinite as physical type slow/controlled release fertilizers. Jordan Journal of Chemistry (JJC), 15(2), 51-59. https://doi.org/10.47014/15.2.1

Alrbaihat, M. (2022). A Review of Size Reduction techniques Using Mechanochemistry Approach. Egyptian Journal of Chemistry, 65(6), 551-558. https://doi.org/10.21608/ejchem.2021.105136.4848

Alrbaihat, M. R., Al-Rawajfeh, A. E., & AlShamaileh, E. (2021). A mechanochemical preparation, properties and kinetic study of kaolin–N, P fertilizers for agricultural applications. Journal of the Mechanical Behavior of Materials, 30(1), 265-271. https://doi.org/10.1515/jmbm-2021-0028

Alrbaihat, M., Al-Zeidaneen, F. K., & Abu-Afifeh, Q. (2022). Reviews of the kinetics of Mechanochemistry: Theoretical and Modeling Aspects. Materials Today: Proceedings. https://doi.org/10.1016/j.matpr.2022.06.195

AlShamaileh, E., Al-Rawajfeh, A. E., & Alrbaihat, M. (2018). Mechanochemical synthesis of slow-release fertilizers: a review. The Open Agriculture Journal, 12(1). http://dx.doi.org/10.2174/1874331501812010011

Baláž, P., & Baláž, P. (2008). Mechanochemistry in minerals engineering (pp. 257-296). Springer Berlin Heidelberg.

Baláž, P., Choi, W. S., Fabián, M., & Godočíková, E. (2006). Mechanochemistry in the preparation of advanced materials. Acta Montanistica Slovaca, 11(2), 122-129.

Boldyrev, V. V. (1986). Topochemistry of thermal decompositions of solids. Thermochimica acta, 100(1), 315-338. https://doi.org/10.1016/0040-6031(86)87063-0

Boldyrev, V. V. (2006). Mechanochemistry and mechanical activation of solids. Russian chemical reviews, 75(3), 177. https://doi.org/10.1070/rc2006v075n03abeh001205

Braga, S. S. (2019). Cyclodextrins: emerging medicines of the new millennium. Biomolecules, 9(12), 801. https://doi.org/10.3390/biom9120801

Cao, X. L., Zhang, Q. H., Pan, X. H., Chen, Z., & Lü, J. (2019). Mechanochemical synthesis of nano–ciprofloxacin with enhanced antibacterial activity. Inorganic Chemistry Communications, 102, 66-69. https://doi.org/10.1016/j.inoche.2019.02.015

Cherukuvada, S., Kaur, R., & Row, T. N. G. (2016). Co-crystallization and small molecule crystal form diversity: from pharmaceutical to materials applications. CrystEngComm, 18(44), 8528-8555. https://doi.org/10.1039/C6CE01835A

Cirri, M., Maestrelli, F., Mennini, N., & Mura, P. (2009). Influence of the preparation method on the physical–chemical properties of ketoprofen–cyclodextrin–phosphatidylcholine ternary systems. Journal of pharmaceutical and biomedical analysis, 50(5), 690-694. https://doi.org/10.1016/j.jpba.2008.11.002

Colombo, I., Grassi, G., & Grassi, M. (2009). Drug mechanochemical activation. Journal of Pharmaceutical Sciences, 98(11), 3961-3986. https://doi.org/10.1002/jps.21733

Cravotto, G., Binello, A., Baranelli, E., Carraro, P., & Trotta, F. (2006). Cyclodextrins as food additives and in food processing. Current Nutrition & Food Science, 2(4), 343-350. https://doi.org/10.2174/157340106778699485

Crini, G., Fourmentin, S., Fenyvesi, É., Torri, G., Fourmentin, M., & Morin-Crini, N. (2018). Cyclodextrins, from molecules to applications. Environmental chemistry letters, 16, 1361-1375. https://doi.org/10.1007/s10311-018-0763-2

Crini, G., Fourmentin, S., Fenyvesi, É., Torri, G., Fourmentin, M., & Morin-Crini, N. (2018). Fundamentals and applications of cyclodextrins. Cyclodextrin fundamentals, reactivity and analysis, 1-55. https://doi.org/10.1007/978-3-319-76159-6_1

Cross, R. A., & McAinsh, A. (2014). Prime movers: the mechanochemistry of mitotic kinesins. Nature reviews Molecular cell biology, 15(4), 257-271. https://doi.org/10.1038/nrm3768

Cugovčan, M., Jablan, J., Lovrić, J., Cinčić, D., Galić, N., & Jug, M. (2017). Biopharmaceutical characterization of praziquantel cocrystals and cyclodextrin complexes prepared by grinding. Journal of pharmaceutical and biomedical analysis, 137, 42-53. https://doi.org/10.1016/j.jpba.2017.01.025

Davis, M. E., & Brewster, M. E. (2004). Cyclodextrin-based pharmaceutics: past, present and future. Nature reviews Drug discovery, 3(12), 1023-1035. https://doi.org/10.1038/nrd1576

Delori, A., Friščić, T., & Jones, W. (2012). The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm, 14(7), 2350-2362. https://doi.org/10.1039/C2CE06582G

Dong, Y. W., Wang, G. W., & Wang, L. (2008). Solvent-free synthesis of naphthopyrans under ball-milling conditions. Tetrahedron, 64(44), 10148-10154. https://doi.org/10.1016/j.tet.2008.08.047

El Achkar, T., Moufawad, T., Ruellan, S., Landy, D., Greige-Gerges, H., & Fourmentin, S. (2020). Cyclodextrins: from solute to solvent. Chemical Communications, 56(23), 3385-3388. https://doi.org/10.1039/D0CC00460J

Friščić, T. (2010). New opportunities for materials synthesis using mechanochemistry. Journal of Materials Chemistry, 20(36), 7599-7605. https://doi.org/10.1039/C0JM00872A

Friscic, T., & Jones, W. (2009). Recent advances in understanding the mechanism of cocrystal formation via grinding. Crystal Growth and Design, 9(3), 1621-1637. https://doi.org/10.1021/cg800764n

Friščić, T., Mottillo, C., & Titi, H. M. (2020). Mechanochemistry for synthesis. Angewandte Chemie, 132(3), 1030-1041. https://doi.org/10.1002/ange.201906755

Gandhi, S., & Shende, P. (2021). Cyclodextrins-modified metallic nanoparticles for effective cancer therapy. Journal of Controlled Release, 339, 41-50. https://doi.org/10.1016/j.jconrel.2021.09.025

Gregório, C. (2014). Review: a history of cyclodextrins. Chem. Rev, 114(21), 10940-10975.

Hasa, D., & Jones, W. (2017). Screening for new pharmaceutical solid forms using mechanochemistry: A practical guide. Advanced Drug Delivery Reviews, 117, 147-161. https://doi.org/10.1016/j.addr.2017.05.001

Hoti, G., Caldera, F., Cecone, C., Rubin Pedrazzo, A., Anceschi, A., Appleton, S. L., ... & Trotta, F. (2021). Effect of the cross-linking density on the swelling and rheological behavior of ester-bridged β-cyclodextrin nanosponges. Materials, 14(3), 478. https://doi.org/10.3390/ma14030478

Jablan, J., Szalontai, G., & Jug, M. (2012). Comparative analysis of zaleplon complexation with cyclodextrins and hydrophilic polymers in solution and in solid state. Journal of pharmaceutical and biomedical analysis, 71, 35-44. https://doi.org/10.1016/j.jpba.2012.07.027

Jansook, P., Ogawa, N., & Loftsson, T. (2018). Cyclodextrins: structure, physicochemical properties and pharmaceutical applications. International journal of pharmaceutics, 535(1-2), 272-284. https://doi.org/10.1016/j.ijpharm.2017.11.018

Jug, M., & Mura, P. A. (2018). Grinding as solvent-free green chemistry approach for cyclodextrin inclusion complex preparation in the solid state. Pharmaceutics, 10(4), 189. https://doi.org/10.3390/pharmaceutics10040189

Kang, H. J., Choi, Y. H., Joo, I. W., & Lee, J. E. (2021). Mechanochemical Synthesis of CD‐MOFs and Application as a Cosmetic Ingredient. Bulletin of the Korean Chemical Society, 42(5), 737-739. https://doi.org/10.1002/bkcs.12253

Kavanagh, O. N., Croker, D. M., Walker, G. M., & Zaworotko, M. J. (2019). Pharmaceutical cocrystals: from serendipity to design to application. Drug Discovery Today, 24(3), 796-804. https://doi.org/10.1016/j.drudis.2018.11.023

Khoushabi, A., Schmocker, A., Pioletti, D. P., Moser, C., Schizas, C., Månson, J. A., & Bourban, P. E. (2015). Photo-polymerization, swelling and mechanical properties of cellulose fibre reinforced poly (ethylene glycol) hydrogels. Composites Science and Technology, 119, 93-99. https://doi.org/10.1016/j.compscitech.2015.10.002

Kurkov, S. V., & Loftsson, T. (2013). Cyclodextrins. International journal of pharmaceutics, 453(1), 167-180. https://doi.org/10.1016/j.ijpharm.2012.06.055

Maestrelli, F., Cecchi, M., Cirri, M., Capasso, G., Mennini, N., & Mura, P. (2009). Comparative study of oxaprozin complexation with natural and chemically-modified cyclodextrins in solution and in the solid state. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 63, 17-25. https://doi.org/10.1007/s10847-008-9484-7

Matencio, A., Navarro-Orcajada, S., Garcia-Carmona, F., & López-Nicolás, J. M. (2020). Applications of cyclodextrins in food science. A review. Trends in food science & technology, 104, 132-143. https://doi.org/10.1016/j.tifs.2020.08.009

McCormick, P. G., & Froes, F. H. (1998). The fundamentals of mechanochemical processing. Jom, 50, 61-65. https://doi.org/10.1007/s11837-998-0290-x

Mennini, N., Bragagni, M., Maestrelli, F., & Mura, P. (2014). Physico-chemical characterization in solution and in the solid state of clonazepam complexes with native and chemically-modified cyclodextrins. Journal of Pharmaceutical and Biomedical Analysis, 89, 142-149. https://doi.org/10.1016/j.jpba.2013.11.009

Morozkina, S., Uspenskaya, M., Tyanutova, M., & Zolotukhina, T. (2019). Mechanochemistry approaches for ketoprofen efficacy improvement. International Multidisciplinary Scientific GeoConference: SGEM, 19(6.1), 791-796.

Mucsi, G. (2019). A review on mechanical activation and mechanical alloying in stirred media mill. Chemical Engineering Research and Design, 148, 460-474. https://doi.org/10.1016/j.cherd.2019.06.029

Nury, T., Zarrouk, A., Mackrill, J. J., Samadi, M., Durand, P., Riedinger, J. M., ... & Lizard, G. (2015). Induction of oxiapoptophagy on 158N murine oligodendrocytes treated by 7-ketocholesterol-, 7β-hydroxycholesterol-, or 24 (S)-hydroxycholesterol: Protective effects of α-tocopherol and docosahexaenoic acid (DHA; C22: 6 n-3). Steroids, 99, 194-203. https://doi.org/10.1016/j.steroids.2015.02.003

Pladevall, B. S., de Aguirre, A., & Maseras, F. (2021). Understanding ball milling mechanochemical processes with DFT calculations and microkinetic modeling. ChemSusChem, 14(13), 2763-2768. https://doi.org/10.1002/cssc.202100497

Promzeleva, M., Volkova, T., Proshin, A., Siluykov, O., Mazur, A., Tolstoy, P., ... & Terekhova, I. (2018). Improved biopharmaceutical properties of oral formulations of 1, 2, 4-thiadiazole derivative with cyclodextrins: in vitro and in vivo evaluation. ACS Biomaterials Science & Engineering, 4(2), 491-501. https://doi.org/10.1021/acsbiomaterials.7b00887

Řezanka, M. (2019). Synthesis of substituted cyclodextrins. Environmental Chemistry Letters, 17(1), 49-63. https://doi.org/10.1007/s10311-018-0779-7

Rudmin, M., Abdullayev, E., Ruban, A., Buyakov, A., & Soktoev, B. (2019). Mechanochemical preparation of slow release fertilizer based on glauconite–urea complexes. Minerals, 9(9), 507. https://doi.org/10.3390/min9090507

Sadaquat, H., Akhtar, M., Nazir, M., Ahmad, R., Alvi, Z., & Akhtar, N. (2021). Biodegradable and biocompatible polymeric nanoparticles for enhanced solubility and safe oral delivery of docetaxel: In vivo toxicity evaluation. International Journal of Pharmaceutics, 598, 120363.

Sikder, M. T., Rahman, M. M., Jakariya, M., Hosokawa, T., Kurasaki, M., & Saito, T. (2019). Remediation of water pollution with native cyclodextrins and modified cyclodextrins: A comparative overview and perspectives. Chemical Engineering Journal, 355, 920-941. https://doi.org/10.1016/j.cej.2018.08.218

Solares-Briones, M., Coyote-Dotor, G., Páez-Franco, J. C., Zermeño-Ortega, M. R., de la O Contreras, C. M., Canseco-González, D., ... & Germán-Acacio, J. M. (2021). Mechanochemistry: A green approach in the preparation of pharmaceutical cocrystals. Pharmaceutics, 13(6), 790.

Stella, V. J., & He, Q. (2008). Cyclodextrins. Toxicologic pathology, 36(1), 30-42.

Štrukil, V. (2018). Mechanochemical organic synthesis: The art of making chemistry green. Synlett, 29(10), 1281-1288. https://doi.org/10.1055/s-0036-1591868

Su, W., Polyakov, N. E., Xu, W., & Su, W. (2021). Preparation of astaxanthin micelles self-assembled by a mechanochemical method from hydroxypropyl β-cyclodextrin and glyceryl monostearate with enhanced antioxidant activity. International Journal of Pharmaceutics, 605, 120799. https://doi.org/10.1016/j.ijpharm.2021.120799

Suryanarayana, C., & An, I. S. (2006). Mechanical alloying and milling. Journal of Powder Materials, 13(5), 371-372. https://doi.org/10.4150/KPMI.2006.13.5.371

Takacs, L. (2013). The historical development of mechanochemistry. Chemical Society Reviews, 42(18), 7649-7659. https://doi.org/10.1039/C2CS35442J

Tan, D., & Friščić, T. (2018). Mechanochemistry for organic chemists: an update. European Journal of Organic Chemistry, 2018(1), 18-33. https://doi.org/10.1002/ejoc.201700961

Tan, D., Loots, L., & Friščić, T. (2016). Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chemical Communications, 52(50), 7760-7781. https://doi.org/10.1039/C6CC02015A

Tole, I., Habermehl-Cwirzen, K., & Cwirzen, A. (2019). Mechanochemical activation of natural clay minerals: an alternative to produce sustainable cementitious binders–review. Mineralogy and Petrology, 113, 449-462. https://doi.org/10.1007/s00710-019-00666-y

Virieux, D., Delogu, F., Porcheddu, A., García, F., & Colacino, E. (2021). Mechanochemical rearrangements. The Journal of Organic Chemistry, 86(20), 13885-13894. https://doi.org/10.1021/acs.joc.1c01323

Watabe, T., Aoki, D., & Otsuka, H. (2021). Enhancement of Mechanophore Activation in Mechanochromic Dendrimers by Functionalization of Their Surface. Macromolecules, 54(4), 1725-1731. https://doi.org/10.1021/acs.macromol.0c02497

Wei, K., Gao, Z., Liu, H., Wu, X., Wang, F., & Xu, H. (2017). Mechanical activation of platinum–acetylide complex for olefin hydrosilylation. ACS Macro Letters, 6(10), 1146-1150. https://doi.org/10.1021/acsmacrolett.7b00487

Wu, D., Xu, J., Chen, Y., Yi, M., & Wang, Q. (2018). Gum Arabic: A promising candidate for the construction of physical hydrogels exhibiting highly stretchable, self-healing and tensility reinforcing performances. Carbohydrate polymers, 181, 167-174. https://doi.org/10.1016/j.carbpol.2017.10.076

Yong, T., Báti, G., García, F., & Stuparu, M. C. (2021). Mechanochemical transformation of planar polyarenes to curved fused-ring systems. Nature Communications, 12(1), 5187. https://doi.org/10.1038/s41467-021-25495-6

Yu, S., Zhang, X., Tan, G., Tian, L., Liu, D., Liu, Y., ... & Pan, W. (2017). A novel pH-induced thermosensitive hydrogel composed of carboxymethyl chitosan and poloxamer cross-linked by glutaraldehyde for ophthalmic drug delivery. Carbohydrate polymers, 155, 208-217. https://doi.org/10.1016/j.carbpol.2016.08.073

Zeeshan, R., Mutahir, Z., Iqbal, H., Ali, M., Iqbal, F., Ijaz, K., ... & Khan, A. F. (2018). Hydroxypropylmethyl cellulose (HPMC) crosslinked chitosan (CH) based scaffolds containing bioactive glass (BG) and zinc oxide (ZnO) for alveolar bone repair. Carbohydrate polymers, 193, 9-18. https://doi.org/10.1016/j.carbpol.2018.03.046

Zhang, Q., & Saito, F. (2012). A review on mechanochemical syntheses of functional materials. Advanced Powder Technology, 23(5), 523-531. https://doi.org/10.1016/j.apt.2012.05.002

Zhao, Y., Rocha, S. V., & Swager, T. M. (2016). Mechanochemical synthesis of extended iptycenes. Journal of the American Chemical Society, 138(42), 13834-13837. https://doi.org/10.1021/jacs.6b09011

Mechanochemical Synthesis of Host-Guest Inclusion Complexes of Cyclodextrin: A Review

Published

2023-04-01

How to Cite

Alrbaihat, M. R. (2023). Mechanochemical Synthesis of Host-Guest Inclusion Complexes of Cyclodextrin: A Review. Biomedicine and Chemical Sciences, 2(2), 102–108. https://doi.org/10.48112/bcs.v2i2.287

Issue

Section

Articles